1 System of linear equations:

Consider the matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 $\Big]$ and $\Big[$ ¹₂ 2 are eigenvectors of M corresponding to the eigenvalues 1 and 2, respectively. In this problem, we want to find the matrix M

a

Find linear equations in the unknowns a, b, c and d

We know that
$$
M\mathbf{x} = \lambda \mathbf{x}
$$

\n $\lambda_1 = 1$ and $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
\nSo $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a+b \\ c+d \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
\n $\lambda_2 = 2$ and $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
\nSo $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a+2b \\ c+2d \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$
\nSo then we have the equations:
\n $a+b=1$
\n $c+d=1$
\n $a+2b=2$
\n $c+2d=4$

b

Write down the augmented matrix corresponding to the equations found in (a)

 $\left(\begin{array}{cccc|c} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0 & 2 \\ 0 & 0 & 1 & 2 & 4 \end{array}\right)$

c

Put the augmented matrix into reduced row echelon form.

$$
\begin{pmatrix}\n1 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 1 & | & 0 \\
1 & 2 & 0 & 0 & | & 2 \\
0 & 0 & 1 & 2 & | & 4\n\end{pmatrix} \rightarrow (3) = (3) - (1) \rightarrow\n\begin{pmatrix}\n1 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 1 & | & 0 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 2 & | & 4\n\end{pmatrix} \rightarrow\n\text{Interchange (2) and (3)} \rightarrow
$$
\n
$$
\begin{pmatrix}\n1 & 1 & 0 & 0 & | & 0 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 1 & | & 0 \\
0 & 0 & 1 & 2 & | & 4\n\end{pmatrix} \rightarrow (1) = (1) - (2) \rightarrow\n\begin{pmatrix}\n1 & 0 & 0 & 0 & | & 0 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 1 & | & 0 \\
0 & 0 & 1 & 2 & | & 4\n\end{pmatrix} \rightarrow (4) = (4) - (3) \rightarrow\n\begin{pmatrix}\n1 & 0 & 0 & 0 & | & 0 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 1 & 1 & | & 0 \\
0 & 0 & 0 & 1 & | & 4\n\end{pmatrix}
$$
\n
$$
\rightarrow (3) = (3) - (4) \rightarrow\n\begin{pmatrix}\n1 & 0 & 0 & 0 & | & 0 \\
0 & 1 & 0 & 0 & | & 1 \\
0 & 0 & 0 & 1 & | & 4\n\end{pmatrix}
$$

18-01-2021 Page 1

d

Find all solutions $a,b,c \, \textrm{and} \, d$ from the reduced row echelon form.

We can immediatly read of: $a = 0, b = 1, c = -4$ and $d = 4$

2 Determinants

Let $n \geq 1$. Suppose that $A, B \in \mathbb{R}^{n \times n}$ are diagonal matrices. Prove by induction on *n* that: $\det\left(\begin{bmatrix} A & B \ B & A \end{bmatrix}\right) = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{nn}^2 - b_{nn}^2)$ Base case:

When $n = 1$ We see that $A \in \mathbb{R}^{1 \times 1} = a_{11}$ and $B \in \mathbb{R}^{1 \times 1} = b_{11}$ Therefore det $\begin{pmatrix} \begin{bmatrix} A & B \ B & A \end{bmatrix} \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} a_{11} & b_{11} \ b_{11} & a_{11} \end{bmatrix} \end{pmatrix} = a_{11} \cdot a_{11} - b_{11} \cdot b_{11} = a_{11}^2 - b_{11}^2$ So the statement hold $\overline{1}$

Induction step:

Assume $n = k$ Assume that $\det\left(\begin{bmatrix} A_{k\times k} & B_{k\times k} \\ B_{k\times k} & A_{k\times k} \end{bmatrix}\right) = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{kk}^2 - b_{kk}^2)$ Now we want to prove that $\det\left(\begin{bmatrix} A_{k+1\times k+1} & B_{k+1\times k+1} \\ B_{k+1\times k+1} & A_{k+1\times k+1} \end{bmatrix}\right) = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2)\dots(a_{kk}^2 - b_{kk}^2)(a_{(k+1)(k+1)}^2 - b_{(k+1)(k+1)})$ We know that $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\left|B_{k\times k} \right|$ $A_{k\times k}$ $\begin{vmatrix} A_{k\times k} & B_{k\times k} \\ B_{k\times k} & A_{k\times k} \end{vmatrix} = \det(A_{k\times k}) \det(A_{k\times k}) - \det(B_{k\times k}) \det(B_{k\times k}) = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{kk}^2 - b_{kk}^2)$ When we calculate $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $|D_{k+1\times k+1} A_{k+1\times k+1}|$ $A_{k+1\times k+1}$ $B_{k+1\times k+1}$ $B_{k+1\times k+1}$ $A_{k+1\times k+1}$ $= det(A_{k+1\times k+1}) \cdot det(A_{k+1\times k+1}) - det(B_{k+1\times k+1}) \cdot det(B_{k+1\times k+1})$ $\det(A_{k+1\times k+1})=$ a_{11} 0 0 ... 0 0 $0 \t a_{22} \t 0 \t \ldots \t 0 \t 0$ $0 \t 0 \t a_{33} \t \ldots \t 0 \t 0$ $0 \t 0 \t 0 \t ... \t a_{kk} \t 0$ $0 \t 0 \t 0 \t \ldots \t 0 \t a_{(k+1)(k+1)}$ $=a_{(k+1)(k+1)}(-1)^{(k+1)+(k+1)}$ a_{11} 0 0 ... 0 $0 \t a_{22} \t 0 \t \ldots \t 0$ $0 \t 0 \t a_{33} \t ... \t 0$ $0 \quad 0 \quad 0 \quad \ldots \quad a_{kk}$ det $(A_{k+1\times k+1}) = a_{(k+1)(k+1)}(-1)^{2k+2} \det(A_{k\times k})$

By cofactor expansion along the $k + 1$ th column and row. We can conclude that $2k + 2$ is even, therefore $\det(A_{k+1 \times k+1}) = a_{(k+1)(k+1)} \det(A_{k \times k})$ When we do the same for $B_{k+1\times k+1}$ we see that $\det(B_{k+1\times k+1}) = b_{(k+1)(k+1)} \det(B_{k\times k})$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $A_{k+1\times k+1}$ $B_{k+1\times k+1}$ $B_{k+1\times k+1}$ $A_{k+1\times k+1}$ $= a_{(k+1)(k+1)} \det(A_k) \cdot a_{(k+1)(k+1)} \det(A_k) - b_{(k+1)(k+1)} \det(B_k) \cdot b_{(k+1)(k+1)} \det(B_k) =$ $a_{(k+1)(k+1)}^2 \det(A_k)^2 - b_{(k+1)(k+1)}^2 \det(B_k)^2$

3: Vector spaces

Consider the vector space P_4 . The operator $L: P_4 \to P_4$ is given by: $L(ax^3 + bx^2 + cx + d) := (b+c)x^3 + (c+d)x^2 + (d+a)x + (a+b)$

a

Show that L is a linear operator. $L(\alpha p + \beta q) = \alpha L(p) + \beta L(q)$

So we want to show that $L(\alpha p + \beta q) = \alpha L(p) + \beta L(q)$

Let's say that $p(x) = ix^3 + jx^2 + kx + l$ and $q(x) = ex^3 + fx^2 + qx + h$

 $L(\alpha p + \beta q) = L((\alpha i + \beta e)x^3 + (\alpha j + \beta f)x^2 + (\alpha k + \beta g)x + \alpha l + \beta h)$ So then we have: $L = \alpha(j+k)x^3 + \beta(f+g)x^3 + \alpha(k+l)x^2 + \beta(g+h)x^2 + \alpha(l+i)x + \beta(h+e)x + \alpha(i+j) + \beta(e+f)$ $L = \alpha((j+k)x^3 + (k+1)x^2 + (l+i)x + (i+j)) + \beta((f+g)x^3 + (g+h)x^2 + (h+e)x + (e+f)) = \alpha L(p) + \beta L(q)$ Which is exactly what we wanted to show.

b

Find a basis for ker L

 $\ker(L) = \{v \in V | L(v) = 0_w\}$ $\ker(L) = \{p \in P_4 | L(p) = 0_{p_4}\}\$ we know that $0_{p_4} = 0x^3 + 0x^2 + 0x + 0$ So therefore we know that $b + c = c + d = d + a = a + b = 0$ And $p = ax^3 + bx^2 + cx + d$ So from that we can conclude that: $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ $\begin{vmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{vmatrix}$ $0 \t 0 \t 1 \t 1$ \rightarrow 1 1 0 0 0 1 1 0 0 0 1 1 $\Big\}$ \rightarrow (2) = (2) – (1) \rightarrow $\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$ $\overline{}$ $\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ $0 \quad 1 \quad 0$ $1 \quad 1$ 1 $\Big\}$ \rightarrow (3) = (3) – (2) \rightarrow \lceil $\Big\}$ 1 0 0 1 0 1 0 −1 0 0 1 1 0 0 1 1 1 $\Big\}$ \rightarrow (4) = (4) – (3) \rightarrow $\sqrt{ }$ $\Big\}$ 1 0 0 1 0 1 0 −1 0 0 1 1 0 0 0 0 1 $\Big\}$ So we see that only d is a free variable. Therefore $a = d$ and $b = -d$ and $c = d$ So from that we can conclude that $p(x) = dx^3 - dx^2 + dx + d$ Which give us the basis $\{1, -1, 1, 1\}^T$

c

Let $S = \{p \in P_4 | p + L(p) = 0\}$ Show that S is a subspace of P_4 . Find the dimension of S

We see that $0 \in S \Rightarrow S$ is nonempty. Let $p \in S$ and $\alpha \in \mathbb{F}$ and we know that $p + L(p) = 0$ So $\alpha p + L(\alpha p) = \alpha p + \alpha L(p)$ we have shown this in a $\alpha p + L(\alpha p) = \alpha (p + L(p)) = \alpha \cdot 0 = 0 \in S$

Let $p, q \in S$ so $p + L(p) = 0$ and $q + L(q) = 0$ $(p+q) + L(p+q) = p + q + L(p) + L(q)$ (Shown at a) $= p + L(p) + q + L(q) = 0 + 0 = 0 \in S$ So therefore S is a subspace of P_4

Let y be an arbitrary element in S where $y = ax^3 + bx^2 + cx + d$ From that we know that $y + L(y) = 0$ So $ax^{3} + bx^{2} + cx + d + (b + c)x^{3} + (c + d)x^{2} + (d + a)x + (a + b) = (a + b + c)x^{3} + (b + c + d)x^{2} +$ $(c+d+a)x + (d+a+b) = 0$ But then we can conclude $a + b + c = b + c + d = c + d + a = d + a + b = 0$ $\left(\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{array}\right)$ ⇒ $(2) = (3)$ $(3) = (4)$ $(4) = (2)$ ⇒ $\left(\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right)$ \Rightarrow (2) = (1) – (2) $(3) = (1) - (3)$ which we can also do by first multiply it by -1, and then add row 1. ⇒ $\left(\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right)$ \Rightarrow (4) = (4) – (2) \Rightarrow $\left(\begin{array}{cccc} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{array}\right)$ \Rightarrow (4) = (4) – (3) \Rightarrow $\left(\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 3 & 0 \end{array}\right)$ \Rightarrow (4) = $\frac{1}{3}(4) \Rightarrow$ $\left(\begin{array}{cccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right)$ we see that these matrix has no free variables, therefore the

dimension is 4.

4 a

Find the matrix representation of D relative to the bases $E = F = (f_1, f_2, f_3, f_4, f_5, f_6)$ With $V = span((f_1, f_2, f_3, f_4, f_5, f_6))$

Theorem 4.2.1 gives us: $\mathbf{a}_i = L(\mathbf{e}_i)$ Where $L(\mathbf{x}) = A\mathbf{x}$ So in our situation: $\mathbf{a}_i = D(f_i)$

We will represent $a\sin(x) + bx\sin(x) + cx^2\sin(x) + d\cos(x) + ex\cos(x) + fx^2\cos(x)$ as $(a, b, c, d, e, f)^T$

 $a_1 = D(f_1) = \cos(x) = (0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0)^T$ $a_2 = D(f_2) = \sin(x) + \cos(x) = (1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0)^T$ $a_3 = D(f_3) = 2x \sin(x) + x^2 \cos(x) = (0 \quad 2 \quad 0 \quad 0 \quad 1)^T$ $a_4 = D(f_4) = -\sin(x) = (-1 \quad 0 \quad 0 \quad 0 \quad 0)^T$ $a_5 = D(f_5) = \cos(x) - \sin(x) = (-1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0)^T$ $a_6 = D(f_6) = 2x\cos(x) - x^2\sin(x) = (0 \quad 0 \quad -1 \quad 0 \quad 2 \quad 0)^T$

So the matrix representation is given by the following matrix:

b

Use the matrix representation found in (a) to find the definite integral.

```
\int ax \cos(x) + bx \sin(x) dx\operatorname{So} D(f) = f' = ax \cos(x) + bx \sin(x) dxWhat is f?
D(f) = Af =\lceil\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array}0 1 0 −1 −1 0
                                           0 0 2 0 0 0
                                           0 0 0 0 0 −1
                                           1 1 0 0 1 0
                                           0 0 0 0 0 2
                                           0 0 1 0 0 0
                                                                                                           1
                                                                                                           \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}f =\lceil

                                                                                                                                 \overline{0}b
                                                                                                                                 0
                                                                                                                                 0
                                                                                                                                 a
                                                                                                                                 \boldsymbol{0}1
                                                                                                                                    \overline{\phantom{a}}which give us:
\sqrt{ }\overline{ }\left.\begin{array}{ccccccc} 0 & 1 & 0 & -1 & -\overline{1} & 0 & 0 \ 0 & 0 & 2 & 0 & 0 & 0 & b \ 0 & 0 & 0 & 0 & 0 & -1 & 0 \ 1 & 1 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{array}\right|_{0}^{0}\setminus
⇒
                                                                              \sqrt{ }\overline{\phantom{a}}\left[\begin{array}{ccccccc} 1 & 0 & 0 & \bar{0} & 1 & 0 & \bar{0} \ 0 & 1 & 0 & -1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 2 & a \ 0 & 0 & 0 & 0 & 1 & 0 & -b \ 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{array}\right]\setminus\Big\}I did it on paper, but it was not readable and not enough time to type it.
```
18-01-2021 Page 6

So we have $x_6 = -1$ and $x_5 = -b$ and $x_4 + 2x_6 = a \Rightarrow x_4 = a$, and $x_3 = 0$ and $x_2 - x_4 = 0 \Rightarrow x_2 - a =$ $0 \Rightarrow x_2 = a$ and finally $x_1 + x_5 = 0 \Rightarrow x_1 - b = 0 \Rightarrow x_1 = b$ $f = bx \sin(x) + ax^2 \cos(x) + ax \cos(x) - b \sin(x)$

Question 5:

Let $\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 $\Big]$ and $\mathbf{x}_2 = \Big[\begin{matrix} 1 \\ 2 \end{matrix}\Big]$ 2 $\mathbf{y}_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ 3 $\Big[\mathrm{and}\ \mathbf{y}_2=\Big[\begin{smallmatrix} 2\ 2 \end{smallmatrix}\Big]$ 2 1 Be given vectors. We want to find the best least squares fit for $y = Mx$ where M is a symmetric matrix of the form $M = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

a

Find the normal equations:

By
$$
\mathbf{y} = M\mathbf{x}
$$
 we find:
\n $4 = a + b, 3 = a + b, 2 = a + b$ and $2 = b + a$ so we have:
\n
$$
\begin{pmatrix}\n1 & 1 & 4 \\
1 & 1 & 3 \\
1 & 2 & 2\n\end{pmatrix}\n\begin{pmatrix}\nA^T A\mathbf{x} = A^T \mathbf{b} \text{ So:} \\
2 & 1 & 2\n\end{pmatrix}\n\begin{bmatrix}\n1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 1\n\end{bmatrix}\n\begin{bmatrix}\na \\
b\n\end{bmatrix} =\n\begin{bmatrix}\n1 & 1 & 1 & 2 \\
1 & 1 & 2 & 1\n\end{bmatrix}\n\begin{bmatrix}\n4 \\
3 \\
2 \\
2\n\end{bmatrix}
$$

b

Find the solution.
\n
$$
A^{T}A = \begin{bmatrix} 7 & 5 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 13 \\ 13 \end{bmatrix} \Rightarrow \text{same reasoning as before} \Rightarrow \begin{pmatrix} 1 & \frac{8}{7} & \frac{13}{7} \\ 0 & 1 & \frac{13}{15} \end{pmatrix} \text{ so } b = \frac{13}{15} \text{ and } a = \frac{13}{15}
$$
\nSo $M = \begin{bmatrix} \frac{13}{15} & \frac{13}{15} \\ \frac{13}{15} & \frac{13}{15} \end{bmatrix}$