1 System of linear equations:

Consider the matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ are eigenvectors of M corresponding to the eigenvalues 1 and 2 ,respectively. In this problem, we want to find the matrix M

\mathbf{a}

Find linear equations in the unknowns a, b, c and d

We know that
$$M\mathbf{x} = \lambda \mathbf{x}$$

$$\lambda_1 = 1 \text{ and } \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
So $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a+b \\ c+d \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

$$\lambda_2 = 2 \text{ and } \mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
So $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} a+2b \\ c+2d \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$
So then we have the equations:
$$a+b=1$$

$$c+d=1$$

$$a+2b=2$$

$$c+2d=4$$

b

Write down the augmented matrix corresponding to the equations found in (a)

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
1 & 2 & 0 & 0 & 2 \\
0 & 0 & 1 & 2 & 4
\end{array}\right)$$

\mathbf{c}

Put the augmented matrix into reduced row echelon form.

$$\begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 1 & 2 & 0 & 0 & | & 2 \\ 0 & 0 & 1 & 2 & | & 4 \end{pmatrix} \rightarrow (3) = (3) - (1) \rightarrow \begin{pmatrix} 1 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & 2 & | & 4 \end{pmatrix} \rightarrow (1) = (1) - (2) \rightarrow \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & 2 & | & 4 \end{pmatrix} \rightarrow (4) = (4) - (3) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 1 & | & 0 \\ 0 & 0 & 1 & 2 & | & 4 \end{pmatrix}$$

$$\rightarrow (3) = (3) - (4) \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 1 & 0 & | & 1 \\ 0 & 0 & 0 & 1 & | & 4 \end{pmatrix}$$

18-01-2021

\mathbf{d}

Find all solutions a, b, c and d from the reduced row echelon form.

We can immediatly read of: a=0, b=1, c=-4 and d=4

2 Determinants

Let $n \geq 1$. Suppose that $A, B \in \mathbb{R}^{n \times n}$ are diagonal matrices. Prove by induction on n that:

$$\det\begin{pmatrix} \begin{bmatrix} A & B \\ B & A \end{bmatrix} \end{pmatrix} = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2)\dots(a_{nn}^2 - b_{nn}^2)$$

When n=1

We see that
$$A \in \mathbb{R}^{1 \times 1} = a_{11}$$
 and $B \in \mathbb{R}^{1 \times 1} = b_{11}$
Therefore $\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det \begin{pmatrix} \begin{bmatrix} a_{11} & b_{11} \\ b_{11} & a_{11} \end{bmatrix} \end{pmatrix} = a_{11} \cdot a_{11} - b_{11} \cdot b_{11} = a_{11}^2 - b_{11}^2$
So the statement hold for $n = 1$

Induction step:

Assume
$$n = k$$
Assume that $\det \left(\begin{bmatrix} A_{k \times k} & B_{k \times k} \end{bmatrix} \right) = (a^2 - b^2)(a^2 - b^2)$

Assume
$$n = k$$

Assume that $\det \begin{pmatrix} \begin{bmatrix} A_{k \times k} & B_{k \times k} \\ B_{k \times k} & A_{k \times k} \end{bmatrix} \end{pmatrix} = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{kk}^2 - b_{kk}^2)$
Now we want to prove that
$$\det \begin{pmatrix} \begin{bmatrix} A_{k+1 \times k+1} & B_{k+1 \times k+1} \\ B_{k+1 \times k+1} & A_{k+1 \times k+1} \end{bmatrix} \end{pmatrix} = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{kk}^2 - b_{kk}^2)(a_{(k+1)(k+1)}^2 - b_{(k+1)(k+1)})$$
We know that
$$\begin{vmatrix} A_{k \times k} & B_{k \times k} \\ A_{k \times k} & B_{k \times k} \end{vmatrix}$$

$$\begin{vmatrix} A_{k \times k} & B_{k \times k} \\ B_{k \times k} & A_{k \times k} \end{vmatrix} = \det(A_{k \times k}) \det(A_{k \times k}) - \det(B_{k \times k}) \det(B_{k \times k}) = (a_{11}^2 - b_{11}^2)(a_{22}^2 - b_{22}^2) \dots (a_{kk}^2 - b_{kk}^2)$$

When we calculate

When we calculate
$$\begin{vmatrix} A_{k+1 \times k+1} & B_{k+1 \times k+1} \\ B_{k+1 \times k+1} & A_{k+1 \times k+1} \end{vmatrix} = \det(A_{k+1 \times k+1}) \cdot \det(A_{k+1 \times k+1}) - \det(B_{k+1 \times k+1}) \cdot \det(B_{k+1 \times k+1})$$

$$\begin{vmatrix} A_{k+1\times k+1} & B_{k+1\times k+1} \\ B_{k+1\times k+1} & A_{k+1\times k+1} \end{vmatrix} = \det(A_{k+1\times k+1}) \cdot \det(A_{k+1\times k+1}) - \det(B_{k+1\times k+1}) \cdot \det(B_{k+1\times k+1})$$

$$\det(A_{k+1\times k+1}) = \begin{vmatrix} a_{11} & 0 & 0 & \dots & 0 & 0 \\ 0 & a_{22} & 0 & \dots & 0 & 0 \\ 0 & 0 & a_{33} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{kk} & 0 \\ 0 & 0 & 0 & \dots & 0 & a_{(k+1)(k+1)} \end{vmatrix} = a_{(k+1)(k+1)}(-1)^{(k+1)+(k+1)} \begin{vmatrix} a_{11} & 0 & 0 & \dots & 0 \\ 0 & a_{22} & 0 & \dots & 0 \\ 0 & 0 & a_{33} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a_{kk} \end{vmatrix}$$

$$\det(A_{k+1\times k+1}) = a_{(k+1)(k+1)}(-1)^{2k+2} \det(A_{k\times k})$$
By sofestor arranging lengths the k+1th solvers and new second seco

$$\det(A_{k+1\times k+1}) = a_{(k+1)(k+1)}(-1)^{2k+2} \det(A_{k\times k})$$

By cofactor expansion along the k + 1th column and row.

We can conclude that 2k + 2 is even, therefore $\det(A_{k+1\times k+1}) = a_{(k+1)(k+1)} \det(A_{k\times k})$

When we do the same for $B_{k+1\times k+1}$ we see that $\det(B_{k+1\times k+1}) = b_{(k+1)(k+1)} \det(B_{k\times k})$

$$\begin{vmatrix} A_{k+1\times k+1} & B_{k+1\times k+1} \\ B_{k+1\times k+1} & A_{k+1\times k+1} \end{vmatrix} = a_{(k+1)(k+1)} \det(A_k) \cdot a_{(k+1)(k+1)} \det(A_k) - b_{(k+1)(k+1)} \det(B_k) \cdot b_{(k+1)(k+1)} \det(B_k) = a_{(k+1)(k+1)}^2 \det(A_k)^2 - b_{(k+1)(k+1)}^2 \det(B_k)^2$$

3: Vector spaces

Consider the vector space P_4 . The operator $L: P_4 \to P_4$ is given by: $L(ax^3 + bx^2 + cx + d) := (b+c)x^3 + (c+d)x^2 + (d+a)x + (a+b)$

\mathbf{a}

Show that L is a linear operator.

$$L(\alpha p + \beta q) = \alpha L(p) + \beta L(q)$$

So we want to show that $L(\alpha p + \beta q) = \alpha L(p) + \beta L(q)$

Let's say that $p(x) = ix^3 + jx^2 + kx + l$ and $q(x) = ex^3 + fx^2 + gx + h$

$$L(\alpha p + \beta q) = L((\alpha i + \beta e)x^3 + (\alpha j + \beta f)x^2 + (\alpha k + \beta g)x + \alpha l + \beta h)$$

So then we have:

$$L = \alpha(j+k)x^3 + \beta(f+g)x^3 + \alpha(k+l)x^2 + \beta(g+h)x^2 + \alpha(l+i)x + \beta(h+e)x + \alpha(i+j) + \beta(e+f)$$

$$L = \alpha((j+k)x^3 + (k+1)x^2 + (l+i)x + (i+j)) + \beta((f+g)x^3 + (g+h)x^2 + (h+e)x + (e+f)) = \alpha L(p) + \beta L(q)$$
 Which is exactly what we wanted to show.

b

Find a basis for $\ker L$

$$\begin{aligned} \ker(L) &= \{v \in V | L(v) = 0_w\} \\ \ker(L) &= \{p \in P_4 | L(p) = 0_{p_4}\} \end{aligned}$$

we know that $0_{p_4} = 0x^3 + 0x^2 + 0x + 0$

So therefore we know that b+c=c+d=d+a=a+b=0

And $p = ax^3 + bx^2 + cx + d$

So from that we can conclude that: $\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow (2) = (2) - (1) \rightarrow (2) \rightarrow (3) = (3) - (2) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow (3) = (3) - (2) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \rightarrow (4) = (4) - (3) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

So we see that only d is a free variable.

Therefore a = d and b = -d and c = d

So from that we can conclude that $p(x) = dx^3 - dx^2 + dx + d$

Which give us the basis $\{1, -1, 1, 1\}^T$

 \mathbf{c}

Let $S = \{ p \in P_4 | p + L(p) = 0 \}$ Show that S is a subspace of P_4 . Find the dimension of S

We see that $0 \in S \Rightarrow S$ is nonempty. Let $p \in S$ and $\alpha \in \mathbb{F}$ and we know that p + L(p) = 0So $\alpha p + L(\alpha p) = \alpha p + \alpha L(p)$ we have shown this in a $\alpha p + L(\alpha p) = \alpha(p + L(p)) = \alpha \cdot 0 = 0 \in S$

Let $p, q \in S$ so p + L(p) = 0 and q + L(q) = 0(p+q) + L(p+q) = p+q + L(p) + L(q) (Shown at a) $= p + L(p) + q + L(q) = 0 + 0 = 0 \in S$ So therefore S is a subspace of P_4

Let y be an arbitrary element in S where $y = ax^3 + bx^2 + cx + d$

From that we know that y + L(y) = 0

So $ax^3 + bx^2 + cx + d + (b+c)x^3 + (c+d)x^2 + (d+a)x + (a+b) = (a+b+c)x^3 + (b+c+d)x^2 + (b+c)x^3 + (b+c)x$ (c+d+a)x + (d+a+b) = 0

But then we can conclude a+b+c=b+c+d=c+d+a=d+a+b=0

$$\Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix} \Rightarrow (4) = (4) - (2) \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \end{pmatrix} \Rightarrow (4) = (4) - (3) \Rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 3 & 0 \end{pmatrix}$$

 \Rightarrow (4) = $\frac{1}{3}$ (4) \Rightarrow $\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$ we see that these matrix has no free variables, therefore the

dimension is 4.

4

\mathbf{a}

Find the matrix representation of D relative to the bases $E = F = (f_1, f_2, f_3, f_4, f_5, f_6)$ With $V = \text{span}((f_1, f_2, f_3, f_4, f_5, f_6)$

Theorem 4.2.1 gives us:

$$\mathbf{a}_j = L(\mathbf{e}_j)$$

Where $L(\mathbf{x}) = A\mathbf{x}$)

So in our situation:

$$\mathbf{a}_j = D(f_j)$$

We will represent $a\sin(x) + bx\sin(x) + cx^2\sin(x) + d\cos(x) + ex\cos(x) + fx^2\cos(x)$ as $(a, b, c, d, e, f)^T$

$$a_1 = D(f_1) = \cos(x) = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}^T$$

$$a_2 = D(f_2) = \sin(x) + \cos(x) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}^T$$

$$a_3 = D(f_3) = 2x\sin(x) + x^2\cos(x) = \begin{pmatrix} 0 & 2 & 0 & 0 & 0 & 1 \end{pmatrix}^T$$

$$a_4 = D(f_4) = -\sin(x) = \begin{pmatrix} -1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}^T$$

$$a_5 = D(f_5) = \cos(x) - \sin(x) = \begin{pmatrix} -1 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}^T$$

$$a_6 = D(f_6) = 2x\cos(x) - x^2\sin(x) = \begin{pmatrix} 0 & 0 & -1 & 0 & 2 & 0 \end{pmatrix}^T$$

So the matrix representation is given by the following matrix:

$$A = \begin{bmatrix} 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

b

Use the matrix representation found in (a) to find the definite integral.

 $\int ax \cos(x) + bx \sin(x) dx$ So $D(f) = f' = ax \cos(x) + bx \sin(x) dx$ What is f?

$$D(f) = Af = \begin{bmatrix} 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} f = \begin{bmatrix} 0 \\ b \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \text{ which give us:}$$

$$\begin{pmatrix} 0 & 1 & 0 & -1 & -1 & 0 & | 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & | b \\ 0 & 0 & 0 & 0 & 0 & -1 & | 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & | 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & | 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & | 0 \\ 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 & a \\ 0 & 0 & 0 & 0 & 0 & 1 & | 0 \end{pmatrix}$$

$$L \operatorname{did} \operatorname{it} \operatorname{on paper} \operatorname{but} \operatorname{it} \operatorname{was not readable and not enough time to}$$

I did it on paper, but it was not readable and not enough time to type it.

18-01-2021

So we have $x_6 = -1$ and $x_5 = -b$ and $x_4 + 2x_6 = a \Rightarrow x_4 = a$, and $x_3 = 0$ and $x_2 - x_4 = 0 \Rightarrow x_2 - a = 0 \Rightarrow x_2 = a$ and finally $x_1 + x_5 = 0 \Rightarrow x_1 - b = 0 \Rightarrow x_1 = b$ $f = bx\sin(x) + ax^2\cos(x) + ax\cos(x) - b\sin(x)$

Question 5:

Let
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\mathbf{y}_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$ and $\mathbf{y}_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
Be given vectors. We want to find the best least squares fit for $\mathbf{y} = M\mathbf{x}$ where M is a symmetric

matrix of the form $M = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

 \mathbf{a}

Find the normal equations:

By
$$\mathbf{y} = M\mathbf{x}$$
 we find:

$$4 = a + b \cdot 3 = a + b \cdot 2 = a + b$$
 and $2 = b + a$ so we have:

By
$$\mathbf{y} = M\mathbf{x}$$
 we find:
 $4 = a + b, 3 = a + b, 2 = a + b \text{ and } 2 = b + a \text{ so we have:}$

$$\begin{pmatrix} 1 & 1 & | & 4 \\ 1 & 1 & | & 3 \\ 1 & 2 & | & 2 \\ 2 & 1 & | & 2 \end{pmatrix} A^T A \mathbf{x} = A^T \mathbf{b} \text{ So:}$$

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 2 \\ 2 \end{bmatrix}$$

b

Find the solution.
$$A^TA = \begin{bmatrix} 7 & 5 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 13 \\ 13 \end{bmatrix} \Rightarrow \text{same reasoning as before} \Rightarrow \begin{pmatrix} 1 & \frac{8}{7} & \frac{13}{7} \\ 0 & 1 & \frac{13}{15} \end{pmatrix} \text{ so } b = \frac{13}{15} \text{ and } a = \frac{13}{15}$$
 So $M = \begin{bmatrix} \frac{13}{15} & \frac{13}{15} \\ \frac{13}{15} & \frac{13}{15} \end{bmatrix}$